Penalized likelihood and Bayesian function selection in regression models
نویسندگان
چکیده
منابع مشابه
Penalized Likelihood Functional Regression
This paper studies the generalized functional linear model with a scalar response and a functional predictor. The response given the functional predictor is assumed to come from the distribution of an exponential family. A penalized likelihood approach is proposed to estimate the unknown intercept and coefficient function in the model. Inference tools such as point-wise confidence intervals of ...
متن کاملApproximate Bayesian logistic regression via penalized likelihood by data augmentation
We present a command, penlogit, for approximate Bayesian logistic regression using penalized likelihood estimation via data augmentation. This command automatically adds specific prior-data records to a dataset. These records are computed so that they generate a penalty function for the log-likelihood of a logistic model, which equals (up to an additive constant) a set of independent log prior ...
متن کاملPenalized Estimating Functions and Variable Selection in Semiparametric Regression Models.
We propose a general strategy for variable selection in semiparametric regression models by penalizing appropriate estimating functions. Important applications include semiparametric linear regression with censored responses and semiparametric regression with missing predictors. Unlike the existing penalized maximum likelihood estimators, the proposed penalized estimating functions may not pert...
متن کاملPenalized likelihood regression for generalized linear models with nonquadratic penalties
One popular method for fitting a regression function is regularization: minimize an objective function which enforces a roughness penalty in addition to coherence with the data. This is the case when formulating penalized likelihood regression for exponential families. Most smoothing methods employ quadratic penalties, leading to linear estimates, and are in general incapable of recovering disc...
متن کاملIdentifiability in penalized function-on-function regression models
Regression models with functional responses and covariates constitute a powerful and increasingly important model class. However, regression with functional data poses well known and challenging problems of non-identifiability. This non-identifiability can manifest itself in arbitrarily large errors for coefficient surface estimates despite accurate predictions of the responses, thus invalidati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AStA Advances in Statistical Analysis
سال: 2013
ISSN: 1863-8171,1863-818X
DOI: 10.1007/s10182-013-0211-3